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Abstract – A previous study successfully demonstrated the 
potential usefulness of Hidden Markov Model (HMM) 
analysis techniques in analyzing pilots’ eye-movement data 
to detect differences in scanning and attention patterns 
caused by display format changes. This paper focuses on 
assessing differences among pilots using the same display 
format. A flight simulator experiment was conducted with 
four pilots who had different levels of flight expertise. The 
analysis revealed variations in the HMM structures during 
the final descent segment: a 2-state HMM for the patterns 
of the least experienced pilot, a 3-state HMM for the two 
intermediate-level pilots, and a 4-state HMM for the most 
experienced pilot. The added “attitude-monitoring” state 
in the 4-state HMM reflected a flight technique well-known 
among experienced instrument pilots. HMM analysis 
methodology and interpretation issues are also discussed. 

Keywords: Aircraft display, attention, expertise level, eye 
movements, Hidden Markov Model (HMM), multiple tasks. 

1 Introduction 
 When visibility is low and few or no visual cues from 
the outside are available, pilots must fly entirely by 
referring to cockpit instruments. In such low-visibility 
conditions, precise tracking of the assigned 3D path is 
critical, especially during near-ground maneuvers such as 
instrument approaches to ensure safe clearance over 
obstacles and terrain. Instrument flight can be thought of as 
concurrent multi-axis tracking on vertical (altitude), 
horizontal (course), and airspeed axes, where each axis has 
a different bandwidth and complex cross-coupling with the 
other axes [1]. Since pilots have finite cognitive resources, 
proper attention allocation among the tracking tasks is the 
key to successful overall tracking performance. There has 
been some controversy over how human operators attend to 
multiple tasks in general [2]. However, in a case such as 

instrument flight, where continuous and conscious tracking 
is required, the adequate working assumption is that pilots 
attend to the tasks in a serial manner rather than in a 
parallel manner. As Moray described in [2], one of the 
justifications is the nature of vision -- although there is 
evidence that pilots use peripheral vision, accurate 
instrument reading requires fixation. Because fixations 
occur one at a time, it is an adequate approximation that 
pilots attend tasks in a serial manner.  

 A number of researchers have analyzed pilots’ eye-
movement data to gain insight into pilots’ basic attention 
management during instrument maneuvers. One study 
involving Hidden Markov Model (HMM) analysis was 
recently reported by the author’s group [3]. The analysis 
revealed that a pilot’s scanning and attention pattern 
changes when conventional digit-and-needle format gauges 
are replaced with digit-only format gauges for the airspeed 
indicator (ASI) and altimeter during simulated Instrument 
Landing System (ILS) approaches. HMM analysis 
demonstrated potential utility in interpreting pilots’ eye-
movement data.  

 However, there are still unsolved issues in using this 
analysis method. For instance, the analysis in [3] was 
focused on within-subject effects on one subject and did not 
include differences among pilots. Of course, different pilots 
are presumed to scan instruments in different ways and may 
require different HMM structures. This paper examines this 
fundamental issue in HMM analysis of pilot eye movements.  

1.1 Differences Among Pilots 
 First, how do different individual pilots scan? Many 
investigators have reported large differences among pilots’ 
scan patterns. Fitts, et al., for instance, noted marked 
differences in the eye-movement characteristics of 40 Air 
Force pilots [4]. For example, one pilot made 41 fixations 
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per minute on the artificial horizon during an instrument 
approach, while another pilot hardly used this instrument at 
all. They reported that there was also a trend that more 
experienced pilots made shorter fixations. Recently, 
Bellenkes, et al., measured eye movements of 12 novice 
pilots and 12 flight instructors flying various maneuvers on 
a simulator [1]. Their data revealed that the instructors 
tended to check the instruments more frequently. In 
addition, the instructors made more fixations on the flight 
variables that were not being maneuvered (“minding the 
store”), which may indicate a sign of good attentional 
flexibility. These findings suggest that, in addition to their 
own style difference, the pilots’ experience level also may 
be a major factor in the different scanning strategies.  

 Prior studies, including those mentioned above, have 
been based on eye-movement statistics, such as fixation 
duration, look rate for each instrument, or transition 
probabilities between two instruments. These eye-
movement statistics provide valuable information on how 
the pilots actually scanned the instruments. However, this 
type of analysis involves time averaging, and so it loses 
information regarding the sequence of instrument scans, 
which contains valuable information about pilots’ attention-
switching process. In addition, some instruments overlap in 
more than one tracking task, and that makes mapping back 
from fixation to each tracking task difficult. An example of 
an overlapping instrument is the attitude indicator (AI), 
which displays both pitch angle (for altitude and airspeed 
tracking) and bank angle (for course tracking). Investigators 
cannot determine which task the pilot was attending to 
when the pilot fixated on the AI.  

 HMM analysis provides a solution for the ambiguity 
in tasks created by such overlapping instruments. It utilizes 
the sequential information of the pilots’ instrument fixation 
to estimate a time-history of their attention switching 
among the different tracking tasks. The following section 
briefly reviews the concepts and procedures of HMM 
analysis.  

1.2 Hidden Markov Model Analysis 
 Throughout instrument flight, pilots have to constantly 
crosscheck multiple instruments and interpret them because 
no single aircraft instrument completely describes the 
aircraft’s behavior alone. HMM analysis exploits pilots’ 
instrument crosscheck to solve the overlapping instrument 
problem. If an overlapping instrument is scanned along with 
other instruments that belong to a particular tracking task, 
then that instrument is more likely being used for that task. 

 It is probably useful to consider a concrete example: 
Figure 1(a) shows a display used in the simulator 
experiment described in the next section. Figure 1(b) 
illustrates the instrument groups for each tracking task. 
Three instrument groups were identified and associated 

respectively with the vertical, horizontal, and airspeed-
tracking tasks consistent with basic principles of attitude 
instrument flying (i.e., the instrument groups defined in [5] 
but with the ASI not in the vertical group and the AI in the 
airspeed group). We assume that during the flight, pilots 
switch their attention between these tasks, and fixate on the 
instruments associated with the current task. Note that 
Figure 1(b) indicates that the AI and the CDI are 
overlapping instruments because they appear in more than 
one task.  

 This concept can be translated into an HMM 
framework as shown in Figure 2. The HMM framework 
consists of two layers of stochastic processes. One is a 
hidden-state process, which is not directly observable but is 
assumed to follow first-order Markov process transition 

Figure 1. Basic-T display used in the simulator 
experiment 
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Figure 2. Three-state HMM  



rules. The other is an observation-symbol process, which is 
physically observable and has a certain probability 
distribution depending on the current hidden state. In our 
case, the task switching (arrows in Figure 2) was modeled 
as the hidden-state process, and the instrument fixation 
corresponded to the observation process. Note that many 
researchers have calculated the transition probabilities 
among instrument fixations, which is equivalent to 
computing the Markov matrix of the fixations. In this 
analysis, however, the pilot’s task was assumed to be the 
Markov process, not the pilot’s fixations.  

 A model structure of an HMM is defined by a set of 
three parameter matrices. The initial state probability 
distribution matrix, π = {πi} (1≤i≤N), gives the probability 
that the hidden state, i, is the initial state; the state-transition 
probability distribution matrix, A = {aij} (1≤i,j≤N), gives 
the transition probability from the hidden state, i, to the 
other state, j; and the observation symbol probability 
distribution matrix, B = {bj(k)} (1≤j≤N, 1≤k≤M), gives the 
probability of the observation symbol, vk, within the given 
hidden state, j. Detailed derivations of the HMM parameter 
estimation algorithms are described in [6]. Table 1 and 
Figure 3 summarize these algorithms and the computation 
flow. 

 The general computation procedure is as follows 
(Figure 3): it starts with an observation-symbol sequence 
(i.e., the fixation sequence data), O = {o1, …, oT}, and the 
initial conditions for the HMM parameters, λ0 = (A0, B0, π0). 
These initial conditions are determined heuristically. The 
estimation results are usually more sensitive to the choice of 
B0 than that of A0 or π0. Especially the balances among 
bj(k=overlapping instruments) seem to determine the bias 
on the Viterbi algorithm outcomes, and therefore should be 
chosen carefully. For example, if bvertical(AI) >> 
bhorizontal(AI), the Viterbi algorithm tends to pick the vertical 
task for AI fixations. Note that these parameters, including 
the initial conditions, are subject to the constraints: ∑j[aij] 
= 1, ∑k[bj(k)] = 1, and ∑i[πi] = 1. When the backward 
procedure and the Baum-Welch algorithm are completed, 
logP(O|λ) is computed by the forward procedure with the 
new λ, and checked for convergence. It usually does not 
take more than 3 to 4 loops for logP(O|λ) to converge to 
within 1%. Finally, the Viterbi algorithm computes the 
estimated hidden-state sequence, q* = {q1,…,qT}. These 
estimates can be compared with the pilot’s verbal reports, 
using a process that is described below. 

 Unlike other pattern recognition applications such as 
speech recognition, there is no training data available for 
the case of instrument flying analysis. Instead, the pilot’s 
verbal reports of the attended tasks are used to train the 

Table 1. HMM algorithms 

A. The Forward Procedure (Scaled) 
1. Initialization 
 
2. Induction 
 
3. Termination 

B. The Backward Procedure (Scaled) 
1. Initialization 
 
2. Induction 
 

C. The Baum-Welch Method 
 
    

D. The Viterbi Algorithm (Logarithm Form) 
1. Preprocessing 
 
 
2. Initialization 
 
3. Recursion 
 
 
 
4. Termination 
 
5. Backtracking 
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Figure 3. HMM computation flow 



HMM. During the simulation flights, each pilot is asked to 
verbalize instrument readings (e.g., “1500 ft,” “left of the 
course”) or current intentions (e.g., “too low, climb a little,” 
“turn to the right”) as much as possible. These reports 
indicate the tracking tasks attended to at each moment, and 
are later converted to the corresponding tasks to be used as 
the training data. These training data are, in a way, run 
together with the actual observation data (the eye-
movement data) in this HMM analysis, and when the 
training is complete, the estimation process is also complete. 
If an HMM estimated task matches the verbal report at the 
reported time or within ± 1 second, the report is considered 
to “match” the estimate. The verbal reports regarding 
single-parameter instruments (e.g., ASI, altimeter, HI) 
usually match, and thus are omitted from the analysis. Only 
the reports related to the overlapping instruments (i.e., the 
AI and CDI) are included in this verification process. If the 
rate of match is not satisfactory, the initial conditions are 
modified accordingly, especially those of bj(k=overlapping 
instruments), and the process is repeated until there is no 
further improvement.  

 The next section describes a flight simulator 
experiment conducted to examine the differences in the 
HMM structures among the four pilots who participated. 

2 Method 
2.1 Simulator Experiment 
 A fixed-base flight simulator configured with Boeing 
757-200 flight dynamics was used. In the simulator, an 
aircraft control column was provided in front of the pilot, 
and a throttle lever at the right side of the pilot. The flaps, 
gear, and trim switches were provided on the yoke of the 
control column. The Basic-T display shown in Figure 1(a) 
was shown on a 17-inch computer monitor in front of the 
pilot. The display had a subtended visual angle of 23.0° 
horizontally and 17.6° vertically at a viewing distance of 30 
inches. The six large instruments were 5.2° in diameter, 
with 1.4° horizontal and 1.7° vertical separations. 

 Four subjects of different expertise levels participated 
in the simulation. The pilots were numbered by order of 
experience. Pilot 1 was an instrument-rated Private Pilot 
with 250 hours of total and 60 hours of instrument time. 
Pilot 2 was a Certified Flight Instructor-Instrument with 
700 hours of total and 100 hours of instrument time. Pilot 3 
was a former military anti-submarine patrol aircraft pilot 
with 1050 hours of total and 225 hours of instrument time. 
Pilot 4 was a former airline pilot with 3500 hours of total 
and 350 hours of instrument time. Pilot 4 had flown in 
various air transporter aircraft including the Boeing 757, 
whose flight dynamics were simulated in this experiment. 

 The scenario simulated was an ILS approach. No out-
the-window view was presented; i.e., all flights were made 

referenced only to the instruments. Figure 4 shows a 
schematic of this approach. The aircraft was initially 
positioned on the left side of the localizer course. This 
created three flight segments each with somewhat different 
task requirements: (i) straight and level, (ii) intercept, and 
(iii) final descent. In segment (i), pilots were instructed to 
maintain 1700 ft and 160 knots. When the localizer needle 
moved in, the pilots started a left turn and this started 
segment (ii). This segment involved configuration changes, 
such as lowering gear and flaps, and slowing to 130 knots. 
When the localizer was centered and the glide slope needle 
started to move in, the pilots began the descent, and this 
started segment (iii). The pilots were instructed to keep the 
localizer and glide slope needles centered and maintain 130 
knots. When the aircraft came down to 370 ft, a go-around 
was initiated and data collection ended for that approach. 

 During each approach, the pilots’ eye-movement data 
were collected with a head-mounted eye-camera (RK-
726PCI/RK-620PC, ISCAN Inc., Burlington, MA) and a 
magnetic head tracker (InsideTRAK, Polhemus, Colchester, 
VT) at the rate of 60 Hz. Flight variables were also 
recorded at 1 Hz. In addition, the pilots’ verbal reports of 
the current intention or instrument reading were recorded 
on a videotape for later HMM analysis. Each pilot flew 
three data-collection approaches. Before the data-collection 
approaches, each pilot received a briefing and made several 
practice approaches, at least one of which was made while 
wearing the eye-tracking headgear and making verbal 
reports for familiarization.  

2.2 Data Analysis 
 From the eye-movement data, intersection coordinates 
of the pilots’ line-of-sight and the display plane were 
computed. Data associated with saccades were eliminated 
by omitting the data points that failed to meet the fixation 
criteria (i.e., staying within an ellipse of 5 pixels 
horizontally, 3 pixels vertically, for 2 consecutive samples). 
Since the line-of-sight intersections for each instrument 
were well separated, they could be easily clustered for the 
associated instrument by simple algorithms such as a K-

Middle
Marker

Go Around at
370 ft

Outer 
Marker 

1700 ftft

25°

160 kt (i) (ii) 

(iii) 

130 kt  

1700 ft 

Figure 4. ILS approach scenario 



means clustering segmentation [7]. Intersections staying 
within the same instrument for less than 0.5 seconds were 
considered a single fixation. Likewise, intersections 
remaining for more than 0.5 seconds were counted as two 
fixations; those staying for more than one second were three 
fixations; and so on. 

 HMM analysis was applied separately to each pilot’s 
data. In addition, since each flight segment had different 
task requirements, each segment was analyzed separately. 
(Note that this procedure is different from that in [3], where 
eye-movement data from all three segments of each 
approach were processed together.) The simplest way to 
estimate the parameters that maximize P(O1,O2,O3|λ), 
where Or denotes the fixation sequence data from that 
segment of the r-th approach (1≤r≤3), was to combine O1, 
O2, and O3 to make one long data string. This process 
connected two data points that were not originally 
connected, but the effects were considered minimal because 
these were only two points in the long data string, and the 
model structure we used did not have any prohibited 
hidden-state transitions.   

3 Results 
 First, the 3-state HMM in Figure 2 was applied to the 
analyses of all segments of all pilots. Table 2 shows the 
resulting rates of match with the verbal reports. Comparison 
showed high match rates of more than 80% in all cases, 
except segment (iii) for Pilot 4. The missed detections in 
this segment occurred mostly at the points when the pilot 
looked at the AI for a relatively long time (2-7 seconds) 
with occasional looks at the CDI, and verbally reported a 
pitch-related task (vertical task). The pilot also frequently 
looked at the heading indicator (HI), and the combination 
of viewing those three instruments tended to make the 
HMM estimate these portions as a horizontal task, which 
conflicted with the verbal reports. The interview with the 
pilot later revealed that, at these points, the pilot checked 
both pitch and bank to maintain stable path tracking on the 
final descent. Based on this information, a new hidden state, 
namely an “attitude-monitoring” task associated with long 
fixation on AI and occasional CDI, was added to make an 
alternative 4-state HMM (Figure 5). The re-computation 
with this model improved the match rate to 31/35 (89%).  

Table 2. Rates of matches between verbal reports and the 
HMM hidden-state estimates (number of matches / number 
of total verbal reports) when the 3-state HMM was applied. 

 Segment (i) 
Straight Level 

Segment (ii) 
Intercept 

Segment  (iii)  
Final Descent 

Pilot 1 13/13 (100%) 23/25 (92.0%) 55/63 (87.3%) 

Pilot 2 27/27 (100%) 39/43 (90.7%) 37/41 (90.2%) 

Pilot 3 28/28 (100%) 26/32 (81.3%) 41/45 (91.1%) 

Pilot 4 13/15 (86.7%) 29/31 (93.6%) 22/35 (62.9%) 

 This fourth state may appear similar to the vertical 
task but is different due to the much longer fixation on the 
AI. This state means that the pilot was not actively 
controlling the aircraft. The aircraft was presumably already 
stabilized, and the pilot had found the “target” pitch and 
bank angles to maintain this stable tracking. In this case, 
crosschecking with the peripheral instruments may not be 
necessary at least for a while. This is a well-known 
technique among experienced instrument pilots. This fourth 
state did not appear in the other segments for Pilot 4. 

 Segment (iii) may have lead to interesting differences 
of attention strategy among pilots. In Table 3, the time 
percentages for each task estimated by the 3-state HMM, or 
an alternative HMM if any, within segment (iii) for each 
pilot are listed. Pilot 4’s relatively low RMS flight technical 
errors and standard deviations of pitch and bank angles 
support the inference made above for this pilot. The table 
also indicates that Pilot 4 spent only 5% of the time on the 
airspeed task during this final descent segment, probably 
because the airspeed was stable enough and did not require 
much control. Therefore, an alternative model would be a 
3-state HMM without an airspeed task, depending on the 
purpose of the analysis. Here, the fact that the pilot still 
kept checking the airspeed occasionally is important, and 
thus the airspeed tracking state is left in the model. 

 Table 3 also shows that Pilot 1 spent only 2.4% of the 
segment (iii) flight time on the airspeed task. It was, 
however, a different story from Pilot 4’s case. The larger 
pitch and bank standard deviations and larger RMS flight 
technical errors indicate that the flight required more effort. 
The RMS airspeed error was relatively large, but the ASI 
was looked at for only 1.5% of segment (iii). The throttle 
was used several times, but almost always without an 
accompanying fixation on the ASI. It implies that the pilot 
was using the throttle mainly for lift control rather than for 
the airspeed control. This suggests merging the airspeed 
task into the vertical task to make a 2-state HMM (Figure 6). 
The estimated task percentages with the 2-state model 
during segment (iii) are shown in Table 3. 

 Similar attention characteristics of Pilot 1 also 
appeared in segment (ii). The airspeed tasks accounted for 
6% of the total time in segment (ii), and the ASI was fixated 

Vertical Horizontal 

Airspeed Attitude 
Monitoring 

Figure 5. Four-state HMM 



less than 1% of the time. The same 2-state HMM was 
applied for this segment, and the resulting time percentages 
are shown in Table 4. The 2-state model in segments (ii) 
and (iii) for this pilot could be a result of high workload 
demand during the localizer intercept and the final descent. 
In segment (i), however, where the workload is assumed 
lower than the other segments, the ASI was more often 
fixated, for 3% of the segment (i) time. As in segments (ii) 
and (iii), the pilot used the throttle for lift control rather 
than for airspeed control. Thus, a slightly modified 3-state 
model was applied to segment (i), and the results are shown 
in Table 4. The airspeed task was kept in the model this 
time because it conveys the important fact that, in this 
segment, the pilot occasionally looked at the ASI.  

Table 4. Estimated task percentages and ASI fixation time 
percentages in segments (i) and (ii) for Pilot 1 

Task time percentages 
(3-state HMM)  

Task time percentages 
(Alternative HMM) 

Fixation 
percent.

 
Vert. 
[%] 

Horz. 
[%] 

Aspd. 
[%] 

Vert. 
[%] 

Horz. 
[%] 

Aspd. 
[%]

ASI 
! 
[%] 

Seg. (i) 62.8 28.5 6.2 68.5* 17.4 2.9 * 2.9 

Seg. (ii) 17.2 54.2 5.5 23.9 54.1 --- 0.2 

* :  Thrust Indicator was included in the vertical task, and not in the 
 airspeed task. 

 The data for Pilot 2 and Pilot 3 seemed to fit the 
original 3-state model for all of the segments. At least, there 
were few conflicts between the verbal report and the 3-state 

model estimation results. The airspeed tracking task 
accompanied by fixations on the thrust indicator occurred 
reasonably often. The fourth state that appeared in segment 
(iii) for Pilot 4, that is, the long fixations on the AI with 
occasional looks at the CDI, was not observed in any 
segment for these pilots. The 3-state model described the 
data of these pilots well, and therefore no modification of 
the model was attempted.  

 Figure 7 shows the instrument fixation data and 
associated HMM estimation results in segment (iii) of the 
last approaches each subject made.  

 Finally, the look rates (fixations per second) and mean 
fixation durations (seconds) for all instruments were 
examined to compare with prior studies. In segment (ii), 
where maneuvering the aircraft was required to intercept 
the localizer, the look rates and mean fixation durations of 
the pilots ranged from 1.23 to 1.71 fixations/sec., and from 
0.40 to 0.54 sec., respectively, and both variables showed 
correlations with the pilots’ instrument time (0.0016 
fixations/sec. increment per each instrument hour, p = 0.039, 
R2 = 0.9236, and 0.0005 sec. decrement per each 
instrument hour, p = 0.042, R2 = 0.9178, respectively). The 
more experienced pilot fixated on instruments more often 
and for shorter duration, which agrees with the prior 
findings [1], [4]. In segments (i) and (iii), however, no 
correlation with the pilots’ expertise level was found.  

4 Discussion 
 The HMM analysis was started with the 3-state HMM 
structure shown in Figure 2, and some variations of the 
model were derived that described the data of each pilot 
during the course of the analysis. These model derivations 
were based on simple observations. It would be convenient 
if there were an automatic and objective way to detect 
possible model structures for the given data. However, even 
if an automatic detection program were used, it would still 
be important for the researcher to be able to provide a 

Table 3. Estimated task time percentages and other data in segment (iii) for all pilots 

Task time percentages 
(3-state HMM) 

Task time percentages  
(Alternative HMM) 

RMS flight 
technical error 

Control surface 
statistics Instrument fixation percentages  

Vert. 
[%] 

Horz. 
[%] 

Aspd. 
[%] 

Vert. 
[%] 

Horz. 
[%] 

Aspd. 
[%]

Monit. 
[%]

From 
glide 
slope 
[deg]

From 
locali

zer 
[deg]

From 
130 

knots
[knts]

Pitch 
mean
(std.) 
[deg]

Bank 
mean 
(std.) 
[deg]

ASI 
! 
[%] 

AI 
" 
[%] 

Alt 
# 
[%] 

CDI
$
[%]

HI
%
[%]

VSI
&
[%]

Pilot 1  54.2 34.8 2.4 62.1 29.8 --- --- 0.47 0.82 14.2 -5.33 
(4.58)

-0.93 
(5.61) 1.5 10.7 6.0 22.4 18.5 10.8

Pilot 2  47.5 22.9 12.9 --- --- --- --- 0.38 0.28 15.3 -4.17 
(1.70)

0.55 
(2.86) 9.0 25.3 12.4 8.3 7.8 5.4

Pilot 3  51.6 21.4 12.7 --- --- --- --- 0.30 0.53 6.6 -4.29 
(1.95)

0.09 
(2.94) 7.4 25.2 5.7 8.8 9.0 2.2

Pilot 4  9.3 80.0 5.0 9.1 43.4 5.0 31.9 0.11 0.13 7.1 -3.76 
(0.63)

0.04 
(1.74) 3.1 46.9 1.2 6.6 12.0 1.9

Vertical  Horizontal 

Figure 6. Two-state HMM 



reasonable explanation for each addition or removal of the 
hidden states. For instance, it is always possible to divide 
one of the hidden states into multiple substates and still fit 
the data with it. For example, the fourth state, the attitude-
monitoring task, for Pilot 4 could be considered a substate 
of the vertical tracking task. However, researchers should 
consider whether it is really necessary to do so, as 
increasing the number of hidden states will incur a 
significant cost in computational efficiency. The amount of 
data required for adequate estimation quality will also 
increase as the number of hidden states increases. If 
multiple models describe the given data equally well, it is 
better to stay with the model that has the smallest number of 
hidden states. 

 One of the criteria used in this paper to justify adding 
states was the match rate of the verbal reports. The fourth 
state was added to segment (iii) for Pilot 4 because it 
improved the match rate significantly. The other criterion 
used was to preserve certain characteristics of the data. For 
instance, the airspeed tasks in segment (i) for Pilot 1 and 
segment (iii) for Pilot 4 were kept in the model because it 
was important to know that the pilots still looked at the ASI 
occasionally. If these characteristics were not of interest, 
then the airspeed task could have been removed. Use of this 
criterion is mostly up to the researcher’s discretion. 

 In this analysis, the numbers of hidden states and the 
pilots’ expertise level showed an interesting positive 
correlation, and that was not a coincidence. The 2-state 

Figure 7. (a)-(d): The fixation sequence (top) and estimated task sequence (bottom) from segment (iii) in the last 
approach each pilot made. The asterisk marks on the bottom plots indicate the tasks implied by the pilot’s verbal 
reports. In (d), where two asterisks appear at the same time point, the lower asterisks indicate the task originally
implied for the 3-state HMM estimation; these were re-interpreted as the attitude-monitoring task when the 4-state 
HMM was applied.  

(d) Pilot 4 

(c) Pilot 3 

(b) Pilot 2 

(a) Pilot 1 



model indicated that one of the tracking tasks was dropped 
because of the high workload that the less-experienced pilot 
had, while the added attitude-monitoring state in the 4-state 
model indicated extra time the experienced pilot had due to 
the well-stabilized aircraft behavior during the final descent 
segment. The result implies an interesting circular effect 
that skilled pilots fly well not only because they track and 
stabilize well, but also because the extra time this creates 
gives them more attentional resources so that they can more 
quickly respond. This implication would not have been 
revealed by analysis of eye-movement statistics alone.  

5 Conclusion 
 A number of previous studies have reported large 
differences among pilots in how they scan instruments. In 
this paper, eye-movement data from four pilots with 
different expertise levels flying simulated ILS approaches 
were collected, and analyzed for their attention patterns 
using HMM analysis. The data from two intermediate-level 
pilots were described well by the 3-state HMM, including 
vertical-, horizontal-, and airspeed-tracking tasks, for all 
segments. The localizer intercept and the final descent 
segments data of the least experienced pilot indicated that 
the pilot dropped the airspeed-tracking task, and thus the 
pilot’s data fit well with the 2-state HMM, including 
vertical- and horizontal-tracking tasks. The data from the 
final descent segment of the most experienced pilot were 
best described by the 4-state HMM, which includes 
vertical-tracking, horizontal-tracking, airspeed-tracking, 
and attitude-monitoring tasks. The last task is consistent 
with a flight technique well-known among experienced 
instrument pilots. The results showed a positive correlation 
between the number of hidden states and the pilots’ 
expertise level.  
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